
Package: nloptr (via r-universe)
August 26, 2024

Type Package

Title R Interface to NLopt

Version 2.1.1.9000

Description Solve optimization problems using an R interface to NLopt.
NLopt is a free/open-source library for nonlinear optimization,
providing a common interface for a number of different free
optimization routines available online as well as original
implementations of various other algorithms. See
<https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/> for
more information on the available algorithms. Building from
included sources requires 'CMake'. On Linux and 'macOS', if a
suitable system build of NLopt (2.7.0 or later) is found, it is
used; otherwise, it is built from included sources via 'CMake'.
On Windows, NLopt is obtained through 'rwinlib' for 'R <=
4.1.x' or grabbed from the appropriate toolchain for 'R >=
4.2.0'.

License LGPL (>= 3)

SystemRequirements cmake (>= 3.2.0) which is used only on Linux or
macOS systems when no system build of nlopt (>= 2.7.0) can be
found.

Biarch true

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Suggests knitr, rmarkdown, covr, tinytest

VignetteBuilder knitr

URL https://github.com/astamm/nloptr, https://astamm.github.io/nloptr/

BugReports https://github.com/astamm/nloptr/issues

Repository https://astamm.r-universe.dev

RemoteUrl https://github.com/astamm/nloptr

RemoteRef HEAD

RemoteSha 6d4943aff5a47bd3b3914f86acaa5d6eeeccaa77

1

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
https://github.com/astamm/nloptr
https://astamm.github.io/nloptr/
https://github.com/astamm/nloptr/issues

2 auglag

Contents
auglag . 2
bobyqa . 5
ccsaq . 7
check.derivatives . 10
cobyla . 11
crs2lm . 13
direct . 16
is.nloptr . 18
isres . 19
lbfgs . 21
mlsl . 23
mma . 25
neldermead . 28
newuoa . 30
nl.grad . 31
nl.opts . 32
nloptr . 33
nloptr.get.default.options . 38
nloptr.print.options . 39
print.nloptr . 40
sbplx . 41
slsqp . 42
stogo . 45
tnewton . 46
varmetric . 48

Index 51

auglag Augmented Lagrangian Algorithm

Description

The Augmented Lagrangian method adds additional terms to the unconstrained objective function,
designed to emulate a Lagrangian multiplier.

Usage

auglag(
x0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
hin = NULL,
hinjac = NULL,

auglag 3

heq = NULL,
heqjac = NULL,
localsolver = "COBYLA",
localtol = 1e-06,
ineq2local = FALSE,
nl.info = FALSE,
control = list(),
deprecatedBehavior = TRUE,
...

)

Arguments

x0 starting point for searching the optimum.

fn objective function that is to be minimized.

gr gradient of the objective function; will be provided provided is NULL and the
solver requires derivatives.

lower, upper lower and upper bound constraints.

hin, hinjac defines the inequality constraints, hin(x) >= 0

heq, heqjac defines the equality constraints, heq(x) = 0.

localsolver available local solvers: COBYLA, LBFGS, MMA, or SLSQP.

localtol tolerance applied in the selected local solver.

ineq2local logical; shall the inequality constraints be treated by the local solver?; not pos-
sible at the moment.

nl.info logical; shall the original NLopt info been shown.

control list of options, see nl.opts for help.
deprecatedBehavior

logical; if TRUE (default for now), the old behavior of the Jacobian function is
used, where the equality is ≥ 0 instead of ≤ 0. This will be reversed in a future
release and eventually removed.

... additional arguments passed to the function.

Details

This method combines the objective function and the nonlinear inequality/equality constraints (if
any) in to a single function: essentially, the objective plus a ‘penalty’ for any violated constraints.

This modified objective function is then passed to another optimization algorithm with no nonlinear
constraints. If the constraints are violated by the solution of this sub-problem, then the size of
the penalties is increased and the process is repeated; eventually, the process must converge to the
desired solution (if it exists).

Since all of the actual optimization is performed in this subsidiary optimizer, the subsidiary algo-
rithm that you specify determines whether the optimization is gradient-based or derivative-free.

The local solvers available at the moment are COBYLA'' (for the derivative-free approach) and LBFGS”,
MMA'', or SLSQP” (for smooth functions). The tolerance for the local solver has to be provided.

4 auglag

There is a variant that only uses penalty functions for equality constraints while inequality con-
straints are passed through to the subsidiary algorithm to be handled directly; in this case, the sub-
sidiary algorithm must handle inequality constraints. (At the moment, this variant has been turned
off because of problems with the NLOPT library.)

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

global_solver the global NLOPT solver used.

local_solver the local NLOPT solver used, LBFGS or COBYLA.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

Birgin and Martinez provide their own free implementation of the method as part of the TANGO
project; other implementations can be found in semi-free packages like LANCELOT.

Author(s)

Hans W. Borchers

References

Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint, “A globally convergent augmented
Lagrangian algorithm for optimization with general constraints and simple bounds,” SIAM J. Nu-
mer. Anal. vol. 28, no. 2, p. 545-572 (1991).

E. G. Birgin and J. M. Martinez, “Improving ultimate convergence of an augmented Lagrangian
method," Optimization Methods and Software vol. 23, no. 2, p. 177-195 (2008).

See Also

alabama::auglag, Rsolnp::solnp

Examples

x0 <- c(1, 1)
fn <- function(x) (x[1] - 2) ^ 2 + (x[2] - 1) ^ 2
hin <- function(x) 0.25 * x[1]^2 + x[2] ^ 2 - 1 # hin <= 0
heq <- function(x) x[1] - 2 * x[2] + 1 # heq = 0
gr <- function(x) nl.grad(x, fn)
hinjac <- function(x) nl.jacobian(x, hin)
heqjac <- function(x) nl.jacobian(x, heq)

bobyqa 5

with COBYLA
auglag(x0, fn, gr = NULL, hin = hin, heq = heq, deprecatedBehavior = FALSE)

$par: 0.8228761 0.9114382
$value: 1.393464
$iter: 1001

auglag(x0, fn, gr = NULL, hin = hin, heq = heq, localsolver = "SLSQP",
deprecatedBehavior = FALSE)

$par: 0.8228757 0.9114378
$value: 1.393465
$iter 184

Example from the alabama::auglag help page
Parameters should be roughly (0, 0, 1) with an objective value of 1.

fn <- function(x) (x[1] + 3 * x[2] + x[3]) ^ 2 + 4 * (x[1] - x[2]) ^ 2
heq <- function(x) x[1] + x[2] + x[3] - 1
hin restated from alabama example to be <= 0.
hin <- function(x) c(-6 * x[2] - 4 * x[3] + x[1] ^ 3 + 3, -x[1], -x[2], -x[3])

set.seed(12)
auglag(runif(3), fn, hin = hin, heq = heq, localsolver= "lbfgs",

deprecatedBehavior = FALSE)

$par: 4.861756e-08 4.732373e-08 9.999999e-01
$value: 1
$iter: 145

Powell problem from the Rsolnp::solnp help page
Parameters should be roughly (-1.7171, 1.5957, 1.8272, -0.7636, -0.7636)
with an objective value of 0.0539498478.

x0 <- c(-2, 2, 2, -1, -1)
fn1 <- function(x) exp(x[1] * x[2] * x[3] * x[4] * x[5])
eqn1 <-function(x)
c(x[1] * x[1] + x[2] * x[2] + x[3] * x[3] + x[4] * x[4] + x[5] * x[5] - 10,
x[2] * x[3] - 5 * x[4] * x[5],
x[1] * x[1] * x[1] + x[2] * x[2] * x[2] + 1)

auglag(x0, fn1, heq = eqn1, localsolver = "mma", deprecatedBehavior = FALSE)

$par: -1.7173645 1.5959655 1.8268352 -0.7636185 -0.7636185
$value: 0.05394987
$iter: 916

bobyqa Bound Optimization by Quadratic Approximation

6 bobyqa

Description

BOBYQA performs derivative-free bound-constrained optimization using an iteratively constructed
quadratic approximation for the objective function.

Usage

bobyqa(
x0,
fn,
lower = NULL,
upper = NULL,
nl.info = FALSE,
control = list(),
...

)

Arguments

x0 starting point for searching the optimum.

fn objective function that is to be minimized.

lower, upper lower and upper bound constraints.

nl.info logical; shall the original NLOPT info be shown.

control list of options, see nl.opts for help.

... additional arguments passed to the function.

Details

This is an algorithm derived from the BOBYQA Fortran subroutine of Powell, converted to C and
modified for the NLOPT stopping criteria.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLOPT and giving additional information.

Note

Because BOBYQA constructs a quadratic approximation of the objective, it may perform poorly for
objective functions that are not twice-differentiable.

ccsaq 7

References

M. J. D. Powell. “The BOBYQA algorithm for bound constrained optimization without deriva-
tives,” Department of Applied Mathematics and Theoretical Physics, Cambridge England, technical
reportNA2009/06 (2009).

See Also

cobyla, newuoa

Examples

Rosenbrock Banana function

rbf <- function(x) {(1 - x[1]) ^ 2 + 100 * (x[2] - x[1] ^ 2) ^ 2}

The function as written above has a minimum of 0 at (1, 1)

S <- bobyqa(c(0, 0), rbf)

S

Rosenbrock Banana function with both parameters constrained to [0, 0.5]

S <- bobyqa(c(0, 0), rbf, lower = c(0, 0), upper = c(0.5, 0.5))

S

ccsaq Conservative Convex Separable Approximation with Affine Approxi-
mation plus Quadratic Penalty

Description

This is a variant of CCSA ("conservative convex separable approximation") which, instead of con-
structing local MMA approximations, constructs simple quadratic approximations (or rather, affine
approximations plus a quadratic penalty term to stay conservative)

Usage

ccsaq(
x0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
hin = NULL,

8 ccsaq

hinjac = NULL,
nl.info = FALSE,
control = list(),
deprecatedBehavior = TRUE,
...

)

Arguments

x0 starting point for searching the optimum.

fn objective function that is to be minimized.

gr gradient of function fn; will be calculated numerically if not specified.

lower, upper lower and upper bound constraints.

hin function defining the inequality constraints, that is hin>=0 for all components.

hinjac Jacobian of function hin; will be calculated numerically if not specified.

nl.info logical; shall the original NLopt info been shown.

control list of options, see nl.opts for help.
deprecatedBehavior

logical; if TRUE (default for now), the old behavior of the Jacobian function is
used, where the equality is ≥ 0 instead of ≤ 0. This will be reversed in a future
release and eventually removed.

... additional arguments passed to the function.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 1) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

“Globally convergent” does not mean that this algorithm converges to the global optimum; it means
that it is guaranteed to converge to some local minimum from any feasible starting point.

References

Krister Svanberg, “A class of globally convergent optimization methods based on conservative con-
vex separable approximations,” SIAM J. Optim. 12 (2), p. 555-573 (2002).

See Also

mma

ccsaq 9

Examples

Solve the Hock-Schittkowski problem no. 100 with analytic gradients
See https://apmonitor.com/wiki/uploads/Apps/hs100.apm

x0.hs100 <- c(1, 2, 0, 4, 0, 1, 1)
fn.hs100 <- function(x) {(x[1] - 10) ^ 2 + 5 * (x[2] - 12) ^ 2 + x[3] ^ 4 +

3 * (x[4] - 11) ^ 2 + 10 * x[5] ^ 6 + 7 * x[6] ^ 2 +
x[7] ^ 4 - 4 * x[6] * x[7] - 10 * x[6] - 8 * x[7]}

hin.hs100 <- function(x) {c(
2 * x[1] ^ 2 + 3 * x[2] ^ 4 + x[3] + 4 * x[4] ^ 2 + 5 * x[5] - 127,
7 * x[1] + 3 * x[2] + 10 * x[3] ^ 2 + x[4] - x[5] - 282,
23 * x[1] + x[2] ^ 2 + 6 * x[6] ^ 2 - 8 * x[7] - 196,
4 * x[1] ^ 2 + x[2] ^ 2 - 3 * x[1] * x[2] + 2 * x[3] ^ 2 + 5 * x[6] -
11 * x[7])

}

gr.hs100 <- function(x) {
c(2 * x[1] - 20,
10 * x[2] - 120,
4 * x[3] ^ 3,
6 * x[4] - 66,
60 * x[5] ^ 5,
14 * x[6] - 4 * x[7] - 10,
4 * x[7] ^ 3 - 4 * x[6] - 8)

}

hinjac.hs100 <- function(x) {
matrix(c(4 * x[1], 12 * x[2] ^ 3, 1, 8 * x[4], 5, 0, 0,

7, 3, 20 * x[3], 1, -1, 0, 0,
23, 2 * x[2], 0, 0, 0, 12 * x[6], -8,
8 * x[1] - 3 * x[2], 2 * x[2] - 3 * x[1], 4 * x[3], 0, 0, 5, -11),
nrow = 4, byrow = TRUE)

}

The optimum value of the objective function should be 680.6300573
A suitable parameter vector is roughly
(2.330, 1.9514, -0.4775, 4.3657, -0.6245, 1.0381, 1.5942)

Results with exact Jacobian
S <- ccsaq(x0.hs100, fn.hs100, gr = gr.hs100,

hin = hin.hs100, hinjac = hinjac.hs100,
nl.info = TRUE, control = list(xtol_rel = 1e-8),
deprecatedBehavior = FALSE)

Results without Jacobian
S <- ccsaq(x0.hs100, fn.hs100, hin = hin.hs100,

nl.info = TRUE, control = list(xtol_rel = 1e-8),
deprecatedBehavior = FALSE)

10 check.derivatives

check.derivatives Check analytic gradients of a function using finite difference approxi-
mations

Description

This function compares the analytic gradients of a function with a finite difference approximation
and prints the results of these checks.

Usage

check.derivatives(
.x,
func,
func_grad,
check_derivatives_tol = 1e-04,
check_derivatives_print = "all",
func_grad_name = "grad_f",
...

)

Arguments

.x point at which the comparison is done.

func function to be evaluated.

func_grad function calculating the analytic gradients.
check_derivatives_tol

option determining when differences between the analytic gradient and its finite
difference approximation are flagged as an error.

check_derivatives_print

option related to the amount of output. ’all’ means that all comparisons are
shown, ’errors’ only shows comparisons that are flagged as an error, and ’none’
shows the number of errors only.

func_grad_name option to change the name of the gradient function that shows up in the output.

... further arguments passed to the functions func and func_grad.

Value

The return value contains a list with the analytic gradient, its finite difference approximation, the
relative errors, and vector comparing the relative errors to the tolerance.

Author(s)

Jelmer Ypma

cobyla 11

See Also

nloptr

Examples

library('nloptr')

example with correct gradient
f <- function(x, a) sum((x - a) ^ 2)

f_grad <- function(x, a) 2 * (x - a)

check.derivatives(.x = 1:10, func = f, func_grad = f_grad,
check_derivatives_print = 'none', a = runif(10))

example with incorrect gradient
f_grad <- function(x, a) 2 * (x - a) + c(0, 0.1, rep(0, 8))

check.derivatives(.x = 1:10, func = f, func_grad = f_grad,
check_derivatives_print = 'errors', a = runif(10))

example with incorrect gradient of vector-valued function
g <- function(x, a) c(sum(x - a), sum((x - a) ^ 2))

g_grad <- function(x, a) {
rbind(rep(1, length(x)) + c(0, 0.01, rep(0, 8)),
2 * (x - a) + c(0, 0.1, rep(0, 8)))

}

check.derivatives(.x = 1:10, func = g, func_grad = g_grad,
check_derivatives_print = 'all', a = runif(10))

cobyla Constrained Optimization by Linear Approximations

Description

COBYLA is an algorithm for derivative-free optimization with nonlinear inequality and equality
constraints (but see below).

Usage

cobyla(
x0,
fn,
lower = NULL,
upper = NULL,
hin = NULL,

12 cobyla

nl.info = FALSE,
control = list(),
deprecatedBehavior = TRUE,
...

)

Arguments

x0 starting point for searching the optimum.

fn objective function that is to be minimized.

lower, upper lower and upper bound constraints.

hin function defining the inequality constraints, that is hin>=0 for all components.

nl.info logical; shall the original NLOPT info be shown.

control list of options, see nl.opts for help.
deprecatedBehavior

logical; if TRUE (default for now), the old behavior of the Jacobian function is
used, where the equality is ≥ 0 instead of ≤ 0. This will be reversed in a future
release and eventually removed.

... additional arguments passed to the function.

Details

It constructs successive linear approximations of the objective function and constraints via a simplex
of n+1 points (in n dimensions), and optimizes these approximations in a trust region at each step.

COBYLA supports equality constraints by transforming them into two inequality constraints. This
functionality has not been added to the wrapper. To use COBYLA with equality constraints, please
use the full nloptr invocation.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

The original code, written in Fortran by Powell, was converted in C for the SCIPY project.

Author(s)

Hans W. Borchers

crs2lm 13

References

M. J. D. Powell, “A direct search optimization method that models the objective and constraint
functions by linear interpolation,” in Advances in Optimization and Numerical Analysis, eds. S.
Gomez and J.-P. Hennart (Kluwer Academic: Dordrecht, 1994), p. 51-67.

See Also

bobyqa, newuoa

Examples

Solve the Hock-Schittkowski problem no. 100 with analytic gradients
See https://apmonitor.com/wiki/uploads/Apps/hs100.apm

x0.hs100 <- c(1, 2, 0, 4, 0, 1, 1)
fn.hs100 <- function(x) {(x[1] - 10) ^ 2 + 5 * (x[2] - 12) ^ 2 + x[3] ^ 4 +

3 * (x[4] - 11) ^ 2 + 10 * x[5] ^ 6 + 7 * x[6] ^ 2 +
x[7] ^ 4 - 4 * x[6] * x[7] - 10 * x[6] - 8 * x[7]}

hin.hs100 <- function(x) {c(
2 * x[1] ^ 2 + 3 * x[2] ^ 4 + x[3] + 4 * x[4] ^ 2 + 5 * x[5] - 127,
7 * x[1] + 3 * x[2] + 10 * x[3] ^ 2 + x[4] - x[5] - 282,
23 * x[1] + x[2] ^ 2 + 6 * x[6] ^ 2 - 8 * x[7] - 196,
4 * x[1] ^ 2 + x[2] ^ 2 - 3 * x[1] * x[2] + 2 * x[3] ^ 2 + 5 * x[6] -
11 * x[7])

}

S <- cobyla(x0.hs100, fn.hs100, hin = hin.hs100,
nl.info = TRUE, control = list(xtol_rel = 1e-8, maxeval = 2000),
deprecatedBehavior = FALSE)

The optimum value of the objective function should be 680.6300573
A suitable parameter vector is roughly
(2.330, 1.9514, -0.4775, 4.3657, -0.6245, 1.0381, 1.5942)

S

crs2lm Controlled Random Search

Description

The Controlled Random Search (CRS) algorithm (and in particular, the CRS2 variant) with the ‘local
mutation’ modification.

14 crs2lm

Usage

crs2lm(
x0,
fn,
lower,
upper,
maxeval = 10000,
pop.size = 10 * (length(x0) + 1),
ranseed = NULL,
xtol_rel = 1e-06,
nl.info = FALSE,
...

)

Arguments

x0 initial point for searching the optimum.

fn objective function that is to be minimized.

lower, upper lower and upper bound constraints.

maxeval maximum number of function evaluations.

pop.size population size.

ranseed prescribe seed for random number generator.

xtol_rel stopping criterion for relative change reached.

nl.info logical; shall the original NLOPT info be shown.

... additional arguments passed to the function.

Details

The CRS algorithms are sometimes compared to genetic algorithms, in that they start with a random
population of points, and randomly evolve these points by heuristic rules. In this case, the evolution
somewhat resembles a randomized Nelder-Mead algorithm.

The published results for CRS seem to be largely empirical.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLOPT and giving additional information.

crs2lm 15

Note

The initial population size for CRS defaults to 10x(n+1) in n dimensions, but this can be changed.
The initial population must be at least n+ 1.

References

W. L. Price, “Global optimization by controlled random search,” J. Optim. Theory Appl. 40 (3), p.
333-348 (1983).

P. Kaelo and M. M. Ali, “Some variants of the controlled random search algorithm for global opti-
mization,” J. Optim. Theory Appl. 130 (2), 253-264 (2006).

Examples

Minimize the Hartmann 6-Dimensional function
See https://www.sfu.ca/~ssurjano/hart6.html

a <- c(1.0, 1.2, 3.0, 3.2)
A <- matrix(c(10, 0.05, 3, 17,

3, 10, 3.5, 8,
17, 17, 1.7, 0.05,
3.5, 0.1, 10, 10,
1.7, 8, 17, 0.1,
8, 14, 8, 14), nrow = 4)

B <- matrix(c(.1312, .2329, .2348, .4047,
.1696, .4135, .1451, .8828,
.5569, .8307, .3522, .8732,
.0124, .3736, .2883, .5743,
.8283, .1004, .3047, .1091,
.5886, .9991, .6650, .0381), nrow = 4)

hartmann6 <- function(x, a, A, B) {
fun <- 0
for (i in 1:4) {
fun <- fun - a[i] * exp(-sum(A[i,] * (x - B[i,]) ^ 2))

}

fun
}

The function has a global minimum of -3.32237 at
(0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)

S <- crs2lm(x0 = rep(0, 6), hartmann6, lower = rep(0, 6), upper = rep(1, 6),
ranseed = 10L, nl.info = TRUE, xtol_rel=1e-8, maxeval = 10000,
a = a, A = A, B = B)

S

16 direct

direct DIviding RECTangles Algorithm for Global Optimization

Description

DIRECT is a deterministic search algorithm based on systematic division of the search domain into
smaller and smaller hyperrectangles. The DIRECT_L makes the algorithm more biased towards
local search (more efficient for functions without too many minima).

Usage

direct(
fn,
lower,
upper,
scaled = TRUE,
original = FALSE,
nl.info = FALSE,
control = list(),
...

)

directL(
fn,
lower,
upper,
randomized = FALSE,
original = FALSE,
nl.info = FALSE,
control = list(),
...

)

Arguments

fn objective function that is to be minimized.

lower, upper lower and upper bound constraints.

scaled logical; shall the hypercube be scaled before starting.

original logical; whether to use the original implementation by Gablonsky – the perfor-
mance is mostly similar.

nl.info logical; shall the original NLopt info been shown.

control list of options, see nl.opts for help.

... additional arguments passed to the function.

randomized logical; shall some randomization be used to decide which dimension to halve
next in the case of near-ties.

direct 17

Details

The DIRECT and DIRECT-L algorithms start by rescaling the bound constraints to a hypercube,
which gives all dimensions equal weight in the search procedure. If your dimensions do not have
equal weight, e.g. if you have a “long and skinny” search space and your function varies at about
the same speed in all directions, it may be better to use unscaled variant of the DIRECT algorithm.

The algorithms only handle finite bound constraints which must be provided. The original versions
may include some support for arbitrary nonlinear inequality, but this has not been tested.

The original versions do not have randomized or unscaled variants, so these options will be disre-
garded for these versions.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

The DIRECT_L algorithm should be tried first.

Author(s)

Hans W. Borchers

References

D. R. Jones, C. D. Perttunen, and B. E. Stuckmann, “Lipschitzian optimization without the Lipschitz
constant,” J. Optimization Theory and Applications, vol. 79, p. 157 (1993).

J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the DIRECT algorithm," J. Global
Optimization, vol. 21 (1), p. 27-37 (2001).

See Also

The dfoptim package will provide a pure R version of this algorithm.

Examples

Minimize the Hartmann6 function
hartmann6 <- function(x) {

a <- c(1.0, 1.2, 3.0, 3.2)
A <- matrix(c(10.0, 0.05, 3.0, 17.0,

3.0, 10.0, 3.5, 8.0,
17.0, 17.0, 1.7, 0.05,

18 is.nloptr

3.5, 0.1, 10.0, 10.0,
1.7, 8.0, 17.0, 0.1,
8.0, 14.0, 8.0, 14.0), nrow=4, ncol=6)

B <- matrix(c(.1312,.2329,.2348,.4047,
.1696,.4135,.1451,.8828,
.5569,.8307,.3522,.8732,
.0124,.3736,.2883,.5743,
.8283,.1004,.3047,.1091,
.5886,.9991,.6650,.0381), nrow=4, ncol=6)

fun <- 0
for (i in 1:4) {

fun <- fun - a[i] * exp(-sum(A[i,] * (x - B[i,]) ^ 2))
}
fun

}
S <- directL(hartmann6, rep(0, 6), rep(1, 6),

nl.info = TRUE, control = list(xtol_rel = 1e-8, maxeval = 1000))
Number of Iterations....: 1000
Termination conditions: stopval: -Inf
xtol_rel: 1e-08, maxeval: 1000, ftol_rel: 0, ftol_abs: 0
Number of inequality constraints: 0
Number of equality constraints: 0
Current value of objective function: -3.32236800687327
Current value of controls:
0.2016884 0.1500025 0.4768667 0.2753391 0.311648 0.6572931

is.nloptr R interface to NLopt

Description

is.nloptr preforms checks to see if a fully specified problem is supplied to nloptr. Mostly for internal
use.

Usage

is.nloptr(x)

Arguments

x object to be tested.

Value

Logical. Return TRUE if all tests were passed, otherwise return FALSE or exit with Error.

Author(s)

Jelmer Ypma

isres 19

See Also

nloptr

isres Improved Stochastic Ranking Evolution Strategy

Description

The Improved Stochastic Ranking Evolution Strategy (ISRES) is an algorithm for nonlinearly con-
strained global optimization, or at least semi-global, although it has heuristics to escape local op-
tima.

Usage

isres(
x0,
fn,
lower,
upper,
hin = NULL,
heq = NULL,
maxeval = 10000,
pop.size = 20 * (length(x0) + 1),
xtol_rel = 1e-06,
nl.info = FALSE,
deprecatedBehavior = TRUE,
...

)

Arguments

x0 initial point for searching the optimum.

fn objective function that is to be minimized.

lower, upper lower and upper bound constraints.

hin function defining the inequality constraints, that is hin <= 0 for all components.

heq function defining the equality constraints, that is heq = 0 for all components.

maxeval maximum number of function evaluations.

pop.size population size.

xtol_rel stopping criterion for relative change reached.

nl.info logical; shall the original NLOPT info be shown.
deprecatedBehavior

logical; if TRUE (default for now), the old behavior of the Jacobian function is
used, where the equality is ≥ 0 instead of ≤ 0. This will be reversed in a future
release and eventually removed.

... additional arguments passed to the function.

20 isres

Details

The evolution strategy is based on a combination of a mutation rule—with a log-normal step-size
update and exponential smoothing—and differential variation—a Nelder-Mead-like update rule).
The fitness ranking is simply via the objective function for problems without nonlinear constraints,
but when nonlinear constraints are included the stochastic ranking proposed by Runarsson and Yao
is employed.

This method supports arbitrary nonlinear inequality and equality constraints in addition to the
bounds constraints.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

The initial population size for CRS defaults to 20x(n+1) in n dimensions, but this can be changed.
The initial population must be at least n+ 1.

Author(s)

Hans W. Borchers

References

Thomas Philip Runarsson and Xin Yao, “Search biases in constrained evolutionary optimization,”
IEEE Trans. on Systems, Man, and Cybernetics Part C: Applications and Reviews, vol. 35 (no. 2),
pp. 233-243 (2005).

Examples

Rosenbrock Banana objective function

rbf <- function(x) {(1 - x[1]) ^ 2 + 100 * (x[2] - x[1] ^ 2) ^ 2}

x0 <- c(-1.2, 1)
lb <- c(-3, -3)
ub <- c(3, 3)

The function as written above has a minimum of 0 at (1, 1)

isres(x0 = x0, fn = rbf, lower = lb, upper = ub)

lbfgs 21

Now subject to the inequality that x[1] + x[2] <= 1.5

hin <- function(x) {x[1] + x[2] - 1.5}

S <- isres(x0 = x0, fn = rbf, hin = hin, lower = lb, upper = ub,
maxeval = 2e5L, deprecatedBehavior = FALSE)

S

sum(S$par)

lbfgs Low-storage BFGS

Description

Low-storage version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

Usage

lbfgs(
x0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
nl.info = FALSE,
control = list(),
...

)

Arguments

x0 initial point for searching the optimum.

fn objective function to be minimized.

gr gradient of function fn; will be calculated numerically if not specified.

lower, upper lower and upper bound constraints.

nl.info logical; shall the original NLopt info been shown.

control list of control parameters, see nl.opts for help.

... further arguments to be passed to the function.

22 lbfgs

Details

The low-storage (or limited-memory) algorithm is a member of the class of quasi-Newton optimiza-
tion methods. It is well suited for optimization problems with a large number of variables.

One parameter of this algorithm is the number m of gradients to remember from previous optimiza-
tion steps. NLopt sets m to a heuristic value by default. It can be changed by the NLopt function
set_vector_storage.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

Based on a Fortran implementation of the low-storage BFGS algorithm written by L. Luksan, and
posted under the GNU LGPL license.

Author(s)

Hans W. Borchers

References

J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Math. Comput. 35, 773-782
(1980).

D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,”
Math. Programming 45, p. 503-528 (1989).

See Also

optim

Examples

flb <- function(x) {
p <- length(x)
sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2)

}
25-dimensional box constrained: par[24] is *not* at the boundary
S <- lbfgs(rep(3, 25), flb, lower=rep(2, 25), upper=rep(4, 25),

nl.info = TRUE, control = list(xtol_rel=1e-8))
Optimal value of objective function: 368.105912874334

mlsl 23

Optimal value of controls: 2 ... 2 2.109093 4

mlsl Multi-level Single-linkage

Description

The “Multi-Level Single-Linkage” (MLSL) algorithm for global optimization searches by a se-
quence of local optimizations from random starting points. A modification of MLSL is included
using a low-discrepancy sequence (LDS) instead of pseudorandom numbers.

Usage

mlsl(
x0,
fn,
gr = NULL,
lower,
upper,
local.method = "LBFGS",
low.discrepancy = TRUE,
nl.info = FALSE,
control = list(),
...

)

Arguments

x0 initial point for searching the optimum.

fn objective function that is to be minimized.

gr gradient of function fn; will be calculated numerically if not specified.

lower, upper lower and upper bound constraints.

local.method only BFGS for the moment.

low.discrepancy

logical; shall a low discrepancy variation be used.

nl.info logical; shall the original NLOPT info be shown.

control list of options, see nl.opts for help.

... additional arguments passed to the function.

24 mlsl

Details

MLSL is a ‘multistart’ algorithm: it works by doing a sequence of local optimizations—using some
other local optimization algorithm—from random or low-discrepancy starting points. MLSL is
distinguished, however, by a ‘clustering’ heuristic that helps it to avoid repeated searches of the
same local optima and also has some theoretical guarantees of finding all local optima in a finite
number of local minimizations.

The local-search portion of MLSL can use any of the other algorithms in NLOPT, and, in particular,
can use either gradient-based or derivative-free algorithms. For this wrapper only gradient-based
LBFGS is available as local method.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLOPT and giving additional information.

Note

If you don’t set a stopping tolerance for your local-optimization algorithm, MLSL defaults to ftol_rel
= 1e-15 and xtol_rel = 1e-7 for the local searches.

Author(s)

Hans W. Borchers

References

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods” Mathematical
Programming, vol. 39, p. 27-78 (1987).

Sergei Kucherenko and Yury Sytsko, “Application of deterministic low-discrepancy sequences in
global optimization”, Computational Optimization and Applications, vol. 30, p. 297-318 (2005).

See Also

direct

Examples

Minimize the Hartmann 6-Dimensional function
See https://www.sfu.ca/~ssurjano/hart6.html

a <- c(1.0, 1.2, 3.0, 3.2)
A <- matrix(c(10, 0.05, 3, 17,

mma 25

3, 10, 3.5, 8,
17, 17, 1.7, 0.05,
3.5, 0.1, 10, 10,
1.7, 8, 17, 0.1,
8, 14, 8, 14), nrow = 4)

B <- matrix(c(.1312, .2329, .2348, .4047,
.1696, .4135, .1451, .8828,
.5569, .8307, .3522, .8732,
.0124, .3736, .2883, .5743,
.8283, .1004, .3047, .1091,
.5886, .9991, .6650, .0381), nrow = 4)

hartmann6 <- function(x, a, A, B) {
fun <- 0
for (i in 1:4) {
fun <- fun - a[i] * exp(-sum(A[i,] * (x - B[i,]) ^ 2))

}

fun
}

The function has a global minimum of -3.32237 at
(0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)

S <- mlsl(x0 = rep(0, 6), hartmann6, lower = rep(0, 6), upper = rep(1, 6),
nl.info = TRUE, control = list(xtol_rel = 1e-8, maxeval = 1000),
a = a, A = A, B = B)

mma Method of Moving Asymptotes

Description

Globally-convergent method-of-moving-asymptotes (MMA) algorithm for gradient-based local op-
timization, including nonlinear inequality constraints (but not equality constraints).

Usage

mma(
x0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
hin = NULL,
hinjac = NULL,
nl.info = FALSE,

26 mma

control = list(),
deprecatedBehavior = TRUE,
...

)

Arguments

x0 starting point for searching the optimum.

fn objective function that is to be minimized.

gr gradient of function fn; will be calculated numerically if not specified.

lower, upper lower and upper bound constraints.

hin function defining the inequality constraints, that is hin <= 0 for all components.

hinjac Jacobian of function hin; will be calculated numerically if not specified.

nl.info logical; shall the original NLopt info been shown.

control list of options, see nl.opts for help.
deprecatedBehavior

logical; if TRUE (default for now), the old behavior of the Jacobian function is
used, where the equality is ≥ 0 instead of ≤ 0. This will be reversed in a future
release and eventually removed.

... additional arguments passed to the function.

Details

This is an improved CCSA ("conservative convex separable approximation") variant of the original
MMA algorithm published by Svanberg in 1987, which has become popular for topology optimiza-
tion.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 1) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

“Globally convergent” does not mean that this algorithm converges to the global optimum; rather,
it means that the algorithm is guaranteed to converge to some local minimum from any feasible
starting point.

Author(s)

Hans W. Borchers

mma 27

References

Krister Svanberg, “A class of globally convergent optimization methods based on conservative con-
vex separable approximations”, SIAM J. Optim. 12 (2), p. 555-573 (2002).

See Also

slsqp

Examples

Solve the Hock-Schittkowski problem no. 100 with analytic gradients
See https://apmonitor.com/wiki/uploads/Apps/hs100.apm

x0.hs100 <- c(1, 2, 0, 4, 0, 1, 1)
fn.hs100 <- function(x) {(x[1] - 10) ^ 2 + 5 * (x[2] - 12) ^ 2 + x[3] ^ 4 +

3 * (x[4] - 11) ^ 2 + 10 * x[5] ^ 6 + 7 * x[6] ^ 2 +
x[7] ^ 4 - 4 * x[6] * x[7] - 10 * x[6] - 8 * x[7]}

hin.hs100 <- function(x) {c(
2 * x[1] ^ 2 + 3 * x[2] ^ 4 + x[3] + 4 * x[4] ^ 2 + 5 * x[5] - 127,
7 * x[1] + 3 * x[2] + 10 * x[3] ^ 2 + x[4] - x[5] - 282,
23 * x[1] + x[2] ^ 2 + 6 * x[6] ^ 2 - 8 * x[7] - 196,
4 * x[1] ^ 2 + x[2] ^ 2 - 3 * x[1] * x[2] + 2 * x[3] ^ 2 + 5 * x[6] -
11 * x[7])

}

gr.hs100 <- function(x) {
c(2 * x[1] - 20,
10 * x[2] - 120,
4 * x[3] ^ 3,
6 * x[4] - 66,
60 * x[5] ^ 5,
14 * x[6] - 4 * x[7] - 10,
4 * x[7] ^ 3 - 4 * x[6] - 8)

}

hinjac.hs100 <- function(x) {
matrix(c(4 * x[1], 12 * x[2] ^ 3, 1, 8 * x[4], 5, 0, 0,

7, 3, 20 * x[3], 1, -1, 0, 0,
23, 2 * x[2], 0, 0, 0, 12 * x[6], -8,
8 * x[1] - 3 * x[2], 2 * x[2] - 3 * x[1], 4 * x[3], 0, 0, 5, -11),
nrow = 4, byrow = TRUE)

}

The optimum value of the objective function should be 680.6300573
A suitable parameter vector is roughly
(2.330, 1.9514, -0.4775, 4.3657, -0.6245, 1.0381, 1.5942)

Using analytic Jacobian
S <- mma(x0.hs100, fn.hs100, gr = gr.hs100,

hin = hin.hs100, hinjac = hinjac.hs100,
nl.info = TRUE, control = list(xtol_rel = 1e-8),

28 neldermead

deprecatedBehavior = FALSE)

Using computed Jacobian
S <- mma(x0.hs100, fn.hs100, hin = hin.hs100,

nl.info = TRUE, control = list(xtol_rel = 1e-8),
deprecatedBehavior = FALSE)

neldermead Nelder-Mead Simplex

Description

An implementation of almost the original Nelder-Mead simplex algorithm.

Usage

neldermead(
x0,
fn,
lower = NULL,
upper = NULL,
nl.info = FALSE,
control = list(),
...

)

Arguments

x0 starting point for searching the optimum.

fn objective function that is to be minimized.

lower, upper lower and upper bound constraints.

nl.info logical; shall the original NLopt info been shown.

control list of options, see nl.opts for help.

... additional arguments passed to the function.

Details

Provides explicit support for bound constraints, using essentially the method proposed in Box.
Whenever a new point would lie outside the bound constraints the point is moved back exactly onto
the constraint.

neldermead 29

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

The author of NLopt would tend to recommend the Subplex method instead.

Author(s)

Hans W. Borchers

References

J. A. Nelder and R. Mead, “A simplex method for function minimization,” The Computer Journal
7, p. 308-313 (1965).

M. J. Box, “A new method of constrained optimization and a comparison with other methods,”
Computer J. 8 (1), 42-52 (1965).

See Also

dfoptim::nmk

Examples

Fletcher and Powell's helic valley
fphv <- function(x)

100*(x[3] - 10*atan2(x[2], x[1])/(2*pi))^2 +
(sqrt(x[1]^2 + x[2]^2) - 1)^2 +x[3]^2

x0 <- c(-1, 0, 0)
neldermead(x0, fphv) # 1 0 0

Powell's Singular Function (PSF)
psf <- function(x) (x[1] + 10*x[2])^2 + 5*(x[3] - x[4])^2 +

(x[2] - 2*x[3])^4 + 10*(x[1] - x[4])^4
x0 <- c(3, -1, 0, 1)
neldermead(x0, psf) # 0 0 0 0, needs maximum number of function calls

Not run:
Bounded version of Nelder-Mead
rosenbrock <- function(x) { ## Rosenbrock Banana function

100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2 +
100 * (x[3] - x[2]^2)^2 + (1 - x[2])^2

30 newuoa

}
lower <- c(-Inf, 0, 0)
upper <- c(Inf, 0.5, 1)
x0 <- c(0, 0.1, 0.1)
S <- neldermead(c(0, 0.1, 0.1), rosenbrock, lower, upper, nl.info = TRUE)
$xmin = c(0.7085595, 0.5000000, 0.2500000)
$fmin = 0.3353605
End(Not run)

newuoa New Unconstrained Optimization with quadratic Approximation

Description

NEWUOA solves quadratic subproblems in a spherical trust region via a truncated conjugate-gradient
algorithm. For bound-constrained problems, BOBYQA should be used instead, as Powell developed
it as an enhancement thereof for bound constraints.

Usage

newuoa(x0, fn, nl.info = FALSE, control = list(), ...)

Arguments

x0 starting point for searching the optimum.

fn objective function that is to be minimized.

nl.info logical; shall the original NLOPT info be shown.

control list of options, see nl.opts for help.

... additional arguments passed to the function.

Details

This is an algorithm derived from the NEWUOA Fortran subroutine of Powell, converted to C and
modified for the NLOPT stopping criteria.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

nl.grad 31

Note

NEWUOA may be largely superseded by BOBYQA.

Author(s)

Hans W. Borchers

References

M. J. D. Powell. “The BOBYQA algorithm for bound constrained optimization without deriva-
tives,” Department of Applied Mathematics and Theoretical Physics, Cambridge England, technical
reportNA2009/06 (2009).

See Also

bobyqa, cobyla

Examples

Rosenbrock Banana function

rbf <- function(x) {(1 - x[1]) ^ 2 + 100 * (x[2] - x[1] ^ 2) ^ 2}

S <- newuoa(c(1, 2), rbf)

The function as written above has a minimum of 0 at (1, 1)

S

nl.grad Numerical Gradients and Jacobians

Description

Provides numerical gradients and Jacobians.

Usage

nl.grad(x0, fn, heps = .Machine$double.eps^(1/3), ...)

Arguments

x0 point as a vector where the gradient is to be calculated.

fn scalar function of one or several variables.

heps step size to be used.

... additional arguments passed to the function.

32 nl.opts

Details

Both functions apply the “central difference formula” with step size as recommended in the litera-
ture.

Value

grad returns the gradient as a vector; jacobian returns the Jacobian as a matrix of usual dimensions.

Author(s)

Hans W. Borchers

Examples

fn1 <- function(x) sum(x ^ 2)
nl.grad(seq(0, 1, by = 0.2), fn1)
[1] 0.0 0.4 0.8 1.2 1.6 2.0
nl.grad(rep(1, 5), fn1)
[1] 2 2 2 2 2

fn2 <- function(x) c(sin(x), cos(x))
x <- (0:1) * 2 * pi
nl.jacobian(x, fn2)
[,1] [,2]
[1,] 1 0
[2,] 0 1
[3,] 0 0
[4,] 0 0

nl.opts Setting NL Options

Description

Sets and changes the NLOPT options.

Usage

nl.opts(optlist = NULL)

Arguments

optlist list of options, see below.

nloptr 33

Details

The following options can be set (here with default values):

stopval = -Inf, # stop minimization at this value
xtol_rel = 1e-6, # stop on small optimization step
maxeval = 1000, # stop on this many function evaluations
ftol_rel = 0.0, # stop on change times function value
ftol_abs = 0.0, # stop on small change of function value
check_derivatives = FALSE

Value

returns a list with default and changed options.

Note

There are more options that can be set for solvers in NLOPT. These cannot be set through their
wrapper functions. To see the full list of options and algorithms, type nloptr.print.options().

Author(s)

Hans W. Borchers

Examples

nl.opts(list(xtol_rel = 1e-8, maxeval = 2000))

nloptr R interface to NLopt

Description

nloptr is an R interface to NLopt, a free/open-source library for nonlinear optimization started by
Steven G. Johnson, providing a common interface for a number of different free optimization rou-
tines available online as well as original implementations of various other algorithms. The NLopt
library is available under the GNU Lesser General Public License (LGPL), and the copyrights are
owned by a variety of authors. Most of the information here has been taken from the NLopt website,
where more details are available.

Usage

nloptr(
x0,
eval_f,
eval_grad_f = NULL,
lb = NULL,
ub = NULL,

https://nlopt.readthedocs.io/en/latest/

34 nloptr

eval_g_ineq = NULL,
eval_jac_g_ineq = NULL,
eval_g_eq = NULL,
eval_jac_g_eq = NULL,
opts = list(),
...

)

Arguments

x0 vector with starting values for the optimization.

eval_f function that returns the value of the objective function. It can also return gradi-
ent information at the same time in a list with elements "objective" and "gradi-
ent" (see below for an example).

eval_grad_f function that returns the value of the gradient of the objective function. Not all
of the algorithms require a gradient.

lb vector with lower bounds of the controls (use -Inf for controls without lower
bound), by default there are no lower bounds for any of the controls.

ub vector with upper bounds of the controls (use Inf for controls without upper
bound), by default there are no upper bounds for any of the controls.

eval_g_ineq function to evaluate (non-)linear inequality constraints that should hold in the
solution. It can also return gradient information at the same time in a list with
elements "constraints" and "jacobian" (see below for an example).

eval_jac_g_ineq

function to evaluate the Jacobian of the (non-)linear inequality constraints that
should hold in the solution.

eval_g_eq function to evaluate (non-)linear equality constraints that should hold in the so-
lution. It can also return gradient information at the same time in a list with
elements "constraints" and "jacobian" (see below for an example).

eval_jac_g_eq function to evaluate the Jacobian of the (non-)linear equality constraints that
should hold in the solution.

opts list with options. The option "algorithm" is required. Check the NLopt website
for a full list of available algorithms. Other options control the termination con-
ditions (minf_max, ftol_rel, ftol_abs, xtol_rel, xtol_abs, maxeval, maxtime).
Default is xtol_rel = 1e-4. More information here. #nolint A full description
of all options is shown by the function nloptr.print.options().
Some algorithms with equality constraints require the option local_opts, which
contains a list with an algorithm and a termination condition for the local algo-
rithm. See ?`nloptr-package` for an example.
The option print_level controls how much output is shown during the opti-
mization process. Possible values:

0 (default) no output
1 show iteration number and value of objective function
2 1 + show value of (in)equalities

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
https://nlopt.readthedocs.io/en/latest/NLopt_Introduction/#termination-conditions

nloptr 35

3 2 + show value of controls

The option check_derivatives (default = FALSE) can be used to run to com-
pare the analytic gradients with finite difference approximations. The option
check_derivatives_print ('all' (default), 'errors', 'none') controls the
output of the derivative checker, if it is run, showing all comparisons, only those
that resulted in an error, or none. The option check_derivatives_tol (de-
fault = 1e-04), determines when a difference between an analytic gradient and
its finite difference approximation is flagged as an error.

... arguments that will be passed to the user-defined objective and constraints func-
tions.

Details

NLopt addresses general nonlinear optimization problems of the form:

min f(x) x ∈ Rn

s.t. g(x) ≤ 0h(x) = 0lb ≤ x ≤ ub

where f(x) is the objective function to be minimized and x represents the n optimization parame-
ters. This problem may optionally be subject to the bound constraints (also called box constraints),
lb and ub. For partially or totally unconstrained problems the bounds can take -Inf or Inf. One
may also optionally have m nonlinear inequality constraints (sometimes called a nonlinear pro-
gramming problem), which can be specified in g(x), and equality constraints that can be specified
in h(x). Note that not all of the algorithms in NLopt can handle constraints.

Value

The return value contains a list with the inputs, and additional elements

call the call that was made to solve

status integer value with the status of the optimization (0 is success)

message more informative message with the status of the optimization

iterations number of iterations that were executed

objective value if the objective function in the solution

solution optimal value of the controls

version version of NLopt that was used

Note

See ?`nloptr-package` for an extended example.

Author(s)

Steven G. Johnson and others (C code)
Jelmer Ypma (R interface)

36 nloptr

References

Steven G. Johnson, The NLopt nonlinear-optimization package, https://github.com/stevengj/
nlopt

See Also

nloptr.print.options check.derivatives optim nlm nlminb Rsolnp::Rsolnp Rsolnp::solnp

Examples

library('nloptr')

Rosenbrock Banana function and gradient in separate functions
eval_f <- function(x) {

return(100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2)
}

eval_grad_f <- function(x) {
return(c(-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),

200 * (x[2] - x[1] * x[1])))
}

initial values
x0 <- c(-1.2, 1)

opts <- list("algorithm"="NLOPT_LD_LBFGS",
"xtol_rel"=1.0e-8)

solve Rosenbrock Banana function
res <- nloptr(x0=x0,

eval_f=eval_f,
eval_grad_f=eval_grad_f,
opts=opts)

print(res)

Rosenbrock Banana function and gradient in one function
this can be used to economize on calculations
eval_f_list <- function(x) {

return(
list(
"objective" = 100 * (x[2] - x[1] * x[1]) ^ 2 + (1 - x[1]) ^ 2,
"gradient" = c(-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),

200 * (x[2] - x[1] * x[1]))))
}

solve Rosenbrock Banana function using an objective function that
returns a list with the objective value and its gradient
res <- nloptr(x0=x0,

eval_f=eval_f_list,
opts=opts)

https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt

nloptr 37

print(res)

Example showing how to solve the problem from the NLopt tutorial.
#
min sqrt(x2)
s.t. x2 >= 0
x2 >= (a1*x1 + b1)^3
x2 >= (a2*x1 + b2)^3
where
a1 = 2, b1 = 0, a2 = -1, b2 = 1
#
re-formulate constraints to be of form g(x) <= 0
(a1*x1 + b1)^3 - x2 <= 0
(a2*x1 + b2)^3 - x2 <= 0

library('nloptr')

objective function
eval_f0 <- function(x, a, b) {

return(sqrt(x[2]))
}

constraint function
eval_g0 <- function(x, a, b) {

return((a*x[1] + b)^3 - x[2])
}

gradient of objective function
eval_grad_f0 <- function(x, a, b) {

return(c(0, .5/sqrt(x[2])))
}

Jacobian of constraint
eval_jac_g0 <- function(x, a, b) {

return(rbind(c(3*a[1]*(a[1]*x[1] + b[1])^2, -1.0),
c(3*a[2]*(a[2]*x[1] + b[2])^2, -1.0)))

}

functions with gradients in objective and constraint function
this can be useful if the same calculations are needed for
the function value and the gradient
eval_f1 <- function(x, a, b) {

return(list("objective"=sqrt(x[2]),
"gradient"=c(0,.5/sqrt(x[2]))))

}

eval_g1 <- function(x, a, b) {
return(list("constraints"=(a*x[1] + b)^3 - x[2],

"jacobian"=rbind(c(3*a[1]*(a[1]*x[1] + b[1])^2, -1.0),

38 nloptr.get.default.options

c(3*a[2]*(a[2]*x[1] + b[2])^2, -1.0))))
}

define parameters
a <- c(2,-1)
b <- c(0, 1)

Solve using NLOPT_LD_MMA with gradient information supplied in separate
function.
res0 <- nloptr(x0=c(1.234,5.678),

eval_f=eval_f0,
eval_grad_f=eval_grad_f0,
lb = c(-Inf,0),
ub = c(Inf,Inf),
eval_g_ineq = eval_g0,
eval_jac_g_ineq = eval_jac_g0,
opts = list("algorithm"="NLOPT_LD_MMA"),
a = a,
b = b)

print(res0)

Solve using NLOPT_LN_COBYLA without gradient information
res1 <- nloptr(x0=c(1.234,5.678),

eval_f=eval_f0,
lb = c(-Inf, 0),
ub = c(Inf, Inf),
eval_g_ineq = eval_g0,
opts = list("algorithm" = "NLOPT_LN_COBYLA"),
a = a,
b = b)

print(res1)

Solve using NLOPT_LD_MMA with gradient information in objective function
res2 <- nloptr(x0=c(1.234, 5.678),

eval_f=eval_f1,
lb = c(-Inf, 0),
ub = c(Inf, Inf),
eval_g_ineq = eval_g1,
opts = list("algorithm"="NLOPT_LD_MMA",

"check_derivatives" = TRUE),
a = a,
b = b)

print(res2)

nloptr.get.default.options

Return a data.frame with all the options that can be supplied to nloptr.

nloptr.print.options 39

Description

This function returns a data.frame with all the options that can be supplied to nloptr. The data.frame
contains the default values of the options and an explanation. A user-friendly way to show these
options is by using the function nloptr.print.options.

Usage

nloptr.get.default.options()

Value

The return value contains a data.frame with the following elements

name name of the option

type type (numeric, logical, integer, character)
possible_values

string explaining the values the option can take

default default value of the option (as a string)
is_termination_condition

is this option part of the termination conditions?

description description of the option (taken from NLopt website if it’s an option that is
passed on to NLopt).

Author(s)

Jelmer Ypma

See Also

nloptr nloptr.print.options

nloptr.print.options Print description of nloptr options

Description

This function prints a list of all the options that can be set when solving a minimization problem
using nloptr.

Usage

nloptr.print.options(opts.show = NULL, opts.user = NULL)

40 print.nloptr

Arguments

opts.show list or vector with names of options. A description will be shown for the options
in this list. By default, a description of all options is shown.

opts.user object containing user supplied options. This argument is optional. It is used
when nloptr.print.options is called from nloptr. In that case options are
listed if print_options_doc is set to TRUE when passing a minimization prob-
lem to nloptr.

Author(s)

Jelmer Ypma

See Also

nloptr

Examples

library('nloptr')
nloptr.print.options()

nloptr.print.options(opts.show = c("algorithm", "check_derivatives"))

opts <- list("algorithm"="NLOPT_LD_LBFGS",
"xtol_rel"=1.0e-8)

nloptr.print.options(opts.user = opts)

print.nloptr Print results after running nloptr

Description

This function prints the nloptr object that holds the results from a minimization using nloptr.

Usage

S3 method for class 'nloptr'
print(x, show.controls = TRUE, ...)

Arguments

x object containing result from minimization.
show.controls Logical or vector with indices. Should we show the value of the control vari-

ables in the solution? If show.controls is a vector with indices, it is used to
select which control variables should be shown. This can be useful if the model
contains a set of parameters of interest and a set of nuisance parameters that are
not of immediate interest.

... further arguments passed to or from other methods.

sbplx 41

Author(s)

Jelmer Ypma

See Also

nloptr

sbplx Subplex Algorithm

Description

Subplex is a variant of Nelder-Mead that uses Nelder-Mead on a sequence of subspaces.

Usage

sbplx(
x0,
fn,
lower = NULL,
upper = NULL,
nl.info = FALSE,
control = list(),
...

)

Arguments

x0 starting point for searching the optimum.

fn objective function that is to be minimized.

lower, upper lower and upper bound constraints.

nl.info logical; shall the original NLopt info been shown.

control list of options, see nl.opts for help.

... additional arguments passed to the function.

Details

SUBPLEX is claimed to be much more efficient and robust than the original Nelder-Mead while
retaining the latter’s facility with discontinuous objectives.

This implementation has explicit support for bound constraints via the method in the Box paper as
described on the neldermead help page.

42 slsqp

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

It is the request of Tom Rowan that reimplementations of his algorithm shall not use the name
‘subplex’.

References

T. Rowan, “Functional Stability Analysis of Numerical Algorithms”, Ph.D. thesis, Department of
Computer Sciences, University of Texas at Austin, 1990.

See Also

subplex::subplex

Examples

Fletcher and Powell's helic valley
fphv <- function(x)

100*(x[3] - 10*atan2(x[2], x[1])/(2*pi))^2 +
(sqrt(x[1]^2 + x[2]^2) - 1)^2 +x[3]^2

x0 <- c(-1, 0, 0)
sbplx(x0, fphv) # 1 0 0

Powell's Singular Function (PSF)
psf <- function(x) (x[1] + 10*x[2])^2 + 5*(x[3] - x[4])^2 +

(x[2] - 2*x[3])^4 + 10*(x[1] - x[4])^4
x0 <- c(3, -1, 0, 1)
sbplx(x0, psf, control = list(maxeval = Inf, ftol_rel = 1e-6)) # 0 0 0 0 (?)

slsqp Sequential Quadratic Programming (SQP)

Description

Sequential (least-squares) quadratic programming (SQP) algorithm for nonlinearly constrained,
gradient-based optimization, supporting both equality and inequality constraints.

slsqp 43

Usage

slsqp(
x0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
hin = NULL,
hinjac = NULL,
heq = NULL,
heqjac = NULL,
nl.info = FALSE,
control = list(),
deprecatedBehavior = TRUE,
...

)

Arguments

x0 starting point for searching the optimum.

fn objective function that is to be minimized.

gr gradient of function fn; will be calculated numerically if not specified.

lower, upper lower and upper bound constraints.

hin function defining the inequality constraints, that is hin <= 0 for all components.
This is new behavior in line with the rest of the nloptr arguments. To use the
old behavior, please set deprecatedBehavior to TRUE.

hinjac Jacobian of function hin; will be calculated numerically if not specified.

heq function defining the equality constraints, that is heq = 0 for all components.

heqjac Jacobian of function heq; will be calculated numerically if not specified.

nl.info logical; shall the original NLopt info been shown.

control list of options, see nl.opts for help.

deprecatedBehavior

logical; if TRUE (default for now), the old behavior of the Jacobian function is
used, where the equality is ≥ 0 instead of ≤ 0. This will be reversed in a future
release and eventually removed.

... additional arguments passed to the function.

Details

The algorithm optimizes successive second-order (quadratic/least-squares) approximations of the
objective function (via BFGS updates), with first-order (affine) approximations of the constraints.

44 slsqp

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 1) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

See more infos at https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/.

Author(s)

Hans W. Borchers

References

Dieter Kraft, “A software package for sequential quadratic programming”, Technical Report DFVLR-
FB 88-28, Institut fuer Dynamik der Flugsysteme, Oberpfaffenhofen, July 1988.

See Also

alabama::auglag, Rsolnp::solnp, Rdonlp2::donlp2

Examples

Solve the Hock-Schittkowski problem no. 100 with analytic gradients
See https://apmonitor.com/wiki/uploads/Apps/hs100.apm

x0.hs100 <- c(1, 2, 0, 4, 0, 1, 1)
fn.hs100 <- function(x) {(x[1] - 10) ^ 2 + 5 * (x[2] - 12) ^ 2 + x[3] ^ 4 +

3 * (x[4] - 11) ^ 2 + 10 * x[5] ^ 6 + 7 * x[6] ^ 2 +
x[7] ^ 4 - 4 * x[6] * x[7] - 10 * x[6] - 8 * x[7]}

hin.hs100 <- function(x) {c(
2 * x[1] ^ 2 + 3 * x[2] ^ 4 + x[3] + 4 * x[4] ^ 2 + 5 * x[5] - 127,
7 * x[1] + 3 * x[2] + 10 * x[3] ^ 2 + x[4] - x[5] - 282,
23 * x[1] + x[2] ^ 2 + 6 * x[6] ^ 2 - 8 * x[7] - 196,
4 * x[1] ^ 2 + x[2] ^ 2 - 3 * x[1] * x[2] + 2 * x[3] ^ 2 + 5 * x[6] -
11 * x[7])

}

S <- slsqp(x0.hs100, fn = fn.hs100, # no gradients and jacobians provided
hin = hin.hs100,
nl.info = TRUE,
control = list(xtol_rel = 1e-8, check_derivatives = TRUE),
deprecatedBehavior = FALSE)

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/

stogo 45

The optimum value of the objective function should be 680.6300573
A suitable parameter vector is roughly
(2.330, 1.9514, -0.4775, 4.3657, -0.6245, 1.0381, 1.5942)

S

stogo Stochastic Global Optimization

Description

STOGO is a global optimization algorithm that works by systematically dividing the search space—
which must be bound-constrained—into smaller hyper-rectangles via a branch-and-bound tech-
nique, and searching them using a gradient-based local-search algorithm (a BFGS variant), option-
ally including some randomness.

Usage

stogo(
x0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
maxeval = 10000,
xtol_rel = 1e-06,
randomized = FALSE,
nl.info = FALSE,
...

)

Arguments

x0 initial point for searching the optimum.

fn objective function that is to be minimized.

gr optional gradient of the objective function.

lower, upper lower and upper bound constraints.

maxeval maximum number of function evaluations.

xtol_rel stopping criterion for relative change reached.

randomized logical; shall a randomizing variant be used?

nl.info logical; shall the original NLOPT info be shown.

... additional arguments passed to the function.

46 tnewton

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLOPT and giving additional information.

Note

Only bounds-constrained problems are supported by this algorithm.

Author(s)

Hans W. Borchers

References

S. Zertchaninov and K. Madsen, “A C++ Programme for Global Optimization,” IMM-REP-1998-
04, Department of Mathematical Modelling, Technical University of Denmark.

Examples

Rosenbrock Banana objective function

rbf <- function(x) {(1 - x[1]) ^ 2 + 100 * (x[2] - x[1] ^ 2) ^ 2}

x0 <- c(-1.2, 1)
lb <- c(-3, -3)
ub <- c(3, 3)

The function as written above has a minimum of 0 at (1, 1)

stogo(x0 = x0, fn = rbf, lower = lb, upper = ub)

tnewton Preconditioned Truncated Newton

Description

Truncated Newton methods, also called Newton-iterative methods, solve an approximating Newton
system using a conjugate-gradient approach and are related to limited-memory BFGS.

tnewton 47

Usage

tnewton(
x0,
fn,
gr = NULL,
lower = NULL,
upper = NULL,
precond = TRUE,
restart = TRUE,
nl.info = FALSE,
control = list(),
...

)

Arguments

x0 starting point for searching the optimum.

fn objective function that is to be minimized.

gr gradient of function fn; will be calculated numerically if not specified.

lower, upper lower and upper bound constraints.

precond logical; preset L-BFGS with steepest descent.

restart logical; restarting L-BFGS with steepest descent.

nl.info logical; shall the original NLopt info been shown.

control list of options, see nl.opts for help.

... additional arguments passed to the function.

Details

Truncated Newton methods are based on approximating the objective with a quadratic function and
applying an iterative scheme such as the linear conjugate-gradient algorithm.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 1) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

Less reliable than Newton’s method, but can handle very large problems.

48 varmetric

Author(s)

Hans W. Borchers

References

R. S. Dembo and T. Steihaug, “Truncated Newton algorithms for large-scale optimization,” Math.
Programming 26, p. 190-212 (1982).

See Also

lbfgs

Examples

flb <- function(x) {
p <- length(x)
sum(c(1, rep(4, p - 1)) * (x - c(1, x[-p]) ^ 2) ^ 2)

}
25-dimensional box constrained: par[24] is *not* at boundary
S <- tnewton(rep(3, 25L), flb, lower = rep(2, 25L), upper = rep(4, 25L),

nl.info = TRUE, control = list(xtol_rel = 1e-8))
Optimal value of objective function: 368.105912874334
Optimal value of controls: 2 ... 2 2.109093 4

varmetric Shifted Limited-memory Variable-metric

Description

Shifted limited-memory variable-metric algorithm.

Usage

varmetric(
x0,
fn,
gr = NULL,
rank2 = TRUE,
lower = NULL,
upper = NULL,
nl.info = FALSE,
control = list(),
...

)

varmetric 49

Arguments

x0 initial point for searching the optimum.

fn objective function to be minimized.

gr gradient of function fn; will be calculated numerically if not specified.

rank2 logical; if true uses a rank-2 update method, else rank-1.

lower, upper lower and upper bound constraints.

nl.info logical; shall the original NLopt info been shown.

control list of control parameters, see nl.opts for help.

... further arguments to be passed to the function.

Details

Variable-metric methods are a variant of the quasi-Newton methods, especially adapted to large-
scale unconstrained (or bound constrained) minimization.

Value

List with components:

par the optimal solution found so far.

value the function value corresponding to par.

iter number of (outer) iterations, see maxeval.

convergence integer code indicating successful completion (> 0) or a possible error number
(< 0).

message character string produced by NLopt and giving additional information.

Note

Based on L. Luksan’s Fortran implementation of a shifted limited-memory variable-metric algo-
rithm.

Author(s)

Hans W. Borchers

References

J. Vlcek and L. Luksan, “Shifted limited-memory variable metric methods for large-scale uncon-
strained minimization,” J. Computational Appl. Math. 186, p. 365-390 (2006).

See Also

lbfgs

50 varmetric

Examples

flb <- function(x) {
p <- length(x)
sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2)

}
25-dimensional box constrained: par[24] is *not* at the boundary
S <- varmetric(rep(3, 25), flb, lower=rep(2, 25), upper=rep(4, 25),

nl.info = TRUE, control = list(xtol_rel=1e-8))
Optimal value of objective function: 368.105912874334
Optimal value of controls: 2 ... 2 2.109093 4

Index

∗ interface
check.derivatives, 10
is.nloptr, 18
nloptr, 33
nloptr.get.default.options, 38
nloptr.print.options, 39
print.nloptr, 40

∗ optimize
check.derivatives, 10
is.nloptr, 18
nloptr, 33
nloptr.get.default.options, 38
nloptr.print.options, 39
print.nloptr, 40

auglag, 2

bobyqa, 5, 13, 31

ccsaq, 7
check.derivatives, 10, 36
cobyla, 7, 11, 31
crs2lm, 13

direct, 16, 24
directL (direct), 16

is.nloptr, 18
isres, 19

lbfgs, 21, 48, 49

mlsl, 23
mma, 8, 25

neldermead, 28
newuoa, 7, 13, 30
nl.grad, 31
nl.jacobian (nl.grad), 31
nl.opts, 32
nlm, 36

nlminb, 36
nloptr, 11, 19, 33, 39–41
nloptr.get.default.options, 38
nloptr.print.options, 36, 39, 39

optim, 22, 36

print.nloptr, 40

sbplx, 41
slsqp, 27, 42
stogo, 45

tnewton, 46

varmetric, 48

51

	auglag
	bobyqa
	ccsaq
	check.derivatives
	cobyla
	crs2lm
	direct
	is.nloptr
	isres
	lbfgs
	mlsl
	mma
	neldermead
	newuoa
	nl.grad
	nl.opts
	nloptr
	nloptr.get.default.options
	nloptr.print.options
	print.nloptr
	sbplx
	slsqp
	stogo
	tnewton
	varmetric
	Index

